
A Guide to Using
NCCS JAGUAR System

2

Outline

•  Jaguar System Overview

•  Logging into Jaguar

•  Login Nodes vs. Compute Nodes

•  File Systems

•  Software Environment

•  Compiling

•  Running Jobs

•  Third-Party Software

•  Resources for Users

3

Outline: Jaguar System Overview

–  Summary of Resources

–  System Software

–  System Hardware

Go to Menu

4

Jaguar System Overview: Summary of
Resources

Jaguar is a Cray XT system consisting of XT4 and XT5 partitions!

Jaguar XT4 XT5

CPU Type 2.1 GHz Quad-core
AMD Opteron (Budapest)

2.6 GHz Hex-core
AMD Opteron (Istanbul)

Interconnect Cray SeaStar2 Router Cray SeaStar2+ Router

Switching Capacity
(Router’s Peak Bandwidth)

45.6GB/s
6 switch ports per Cray

SeaStar chip, 7.6 GB/s each

57.6GB/s
6 switch ports per Cray

SeaStar2+ chip, 9.6 GB/s each

Memory type DDR2-800 (some nodes use
DDR2-667 memory) DDR2-800

Memory Bandwidth 10.6 to 12.8 GB/sec
per AMD Opteron

21.2 GB/sec to 25.6 GB/sec
per compute node

Floor Space 1400 feet2 4400 feet2
Cooling Technology Air Liquid

Go to Menu

5

Jaguar System Overview: Summary of
Resources

Jaguar is a Cray XT system consisting of XT4 and XT5 partitions!

Jaguar XT4 XT5 Total

Nodes per blade 4

CPUs per node1 1 2

Cores per node 4 12

Compute nodes2 7,832 18,688

AMD Opteron cores 31,328 224,256 255,584

Memory per CPU 8 GB/CPU

System Memory ~61.2 TB ~292 TB ~353.2 TB

Disk Bandwidth ~44 GB/s ~240 GB/s ~284 GB/s

Disk Space ~750 TB ~10,000 TB ~10,750 TB

Interconnect Bandwidth ~157 TB/s ~374 TB/s ~532 TB/s

Floor Space 1400 feet2 4400 feet2 5800 feet2

Ideal Performance per core3
(4 FLOPs/cycle times 2.1*109 cycles/sec) 8.4 GFLOPS 10.4 GFLOPS

Overall Ideal Performance ~263.16 TFLOPS ~2.33 PFLOPS ~2.60 PFLOPS

1 In the context of Jaguar CPU is also called a socket.
2 Note that in addition to compute nodes Jaguar also has input/output (I/O) and login service nodes.
3 FLOPs = FLoating point OPerations; FLOPS = FLoating point Operations Per Second

Go to Menu

6

Jaguar System Overview: System Software

•  Operating system is Cray Linux Environment (CLE) 2.1:
–  Compute Nodes – Compute Node Linux (CNL)
–  Login/Service nodes – SUSE Linux

•  Compilers
–  C/C++, Fortran

•  MPI implementation
–  Cray MPI based on MPICH

•  High Performance Storage System (HPSS) software

Go to Menu

7

Jaguar System Overview: System Hardware

XT5 partition of Jaguar

Go to Menu

8

Jaguar System Overview: System Hardware

Cray XT4 Blade

Four Compute Nodes per Blade
ONE AMD quad-core CPU per node

Cray XT5 Blade

Four Compute Nodes per Blade
TWO AMD hex-core CPUs per node

Go to Menu

9

Jaguar System Overview: System Hardware

NUMA Node 0

NUMA Node 1

AMD
Opteron

Processor

NUMA Node
D
I
M
M
S

Go to Menu

10

Jaguar System Overview: System Hardware

•  XT System Torus Architecture

Go to Menu

11

Jaguar System Overview: System Hardware

Cache Hierarchy
Quad-core AMD Opteron CPU

Go to Menu

12

Outline: Logging into Jaguar

–  Connection Requirements

–  Connection Procedures

–  One-Time Password (OTP) Authentication

–  Connection Options

Go to Menu

13

Logging into Jaguar: Connection
Requirements

•  The only supported remote client on NCCS systems is a secure shell (SSH) client.
•  The only supported authentication method is one-time passwords (OTP).

•  UNIX-based operating systems generally have an SSH client built in.
•  Windows users may obtain free clients online, such as PuTTY.

Any SSH client:

•  must support the SSH-2 protocol (supported by all modern SSH clients).
•  must allow keyboard-interactive authentication to access NCCS systems. For

UNIX-based SSH clients, the following line should be in either the default
ssh_config file or your $HOME/.ssh/config file:

 PreferredAuthentications keyboard-
interactive,password

 The line may also contain other authentication methods, so long as keyboard-
interactive is included.

Go to Menu

14

Logging into Jaguar: Connection
Procedures

One more time: Jaguar is a combined system of Cray XT4 and XT5 systems!

To connect to Jaguar from a UNIX-based system type the following in your terminal:

ssh userid@jaguar.ccs.ornl.gov - Cray XT4
ssh userid@jaguarpf.ccs.ornl.gov - Cray XT5

Enter PASSCODE: PIN + 6 digits from RSA® SecurID

NCCS RSA Key Fingerprints:

jaguar 0d:c9:db:37:55:da:41:26:55:4a:80:bb:71:55:dd:01
jaguarpf 80:58:21:03:96:47:1a:15:2c:25:d3:ca:e6:04:e8:a7

Go to Menu

15

Logging into Jaguar: One-Time Password (OTP)
Authentication

RSA® SecurID - Quick Start Guide

All NCCS systems currently use OTPs as their authentication method. To login to NCCS systems, an RSA SecurID key
fob is required!

Activating your SecurID key fob:
1.  Return the completed NCCS token activation form to the address provided on the form. Once the form is received

by NCCS, the RSA OTP token will be enabled, and you will be notified by email.
2.  Initiate an SSH connection to home.ccs.ornl.gov
3.  When prompted for a PASSCODE, enter the token code shown on the fob. You will be asked if you are ready to

set your PIN. Answer with “Y.”
4.  You will then be prompted to enter a PIN. Enter a 4- to 6-digit number you can remember. Reenter your PIN when

prompted.
5.  You will be prompted to enter your full PASSCODE. To do so, wait until the next token code appears on your fob

and enter your PASSCODE, which is now your PIN + the 6-digit token code displayed on your fob. For example,
if the pin was 1111 and the token code was 223344, then the full PASSCODE would be 1111223344.

6.  Your PIN is now set, and your fob is activated and ready for use. Log on using the procedure outlined in

Token code

Time bars

Old design New design

Go to Menu

16

Logging into Jaguar: Connection Options

Automatic forwarding of the X11 display to a remote computer is highly recommended with the use of SSH and a
local X server. To set up an automatic X11 tunneling with SSH, do one of the following:

1. Command line: Invoke ssh with the -X option:

 ssh -X userid@jaguarpf.ccs.ornl.gov

 Note 1: use of the -x (lowercase x) option will disable X11 forwarding
 Note 2: use of the -Y option (instead of -X) is necessary on some systems to enable "trusted" X11 forwarding

2. Configuration file: Edit (or create) the .ssh/config file to have the following line in it:

 ForwardX11 yes

3. Graphical Menu: Many SSH clients have a menu to change the configuration settings.
 PuTTY: check the box next to Connection --> SSH --> X11 --> Enable X11 Forwarding
 Note 1: Unix-like systems, with the exception of Mac OS-X, offer native X11 support. Apple does provide an
 implementation for OS-X, available from the Apple website.
 Note 2: For Windows systems you can also use free Xming software.
 Note 3: PuTTY stores configuration settings for each server separately. If, for example, you enable X11
Forwarding for jaguar.ccs.ornl.gov, it will not change the settings for jaguarpf.ccs.ornl.gov

X11 Tunneling

Go to Menu

17

Outline: Login Nodes vs. Compute Nodes

–  Login Nodes

–  Compute (Batch) Nodes

Go to Menu

18

Login Nodes

•  When you login to Jaguar, you will be placed on a “login node”

•  Login nodes are used for basic tasks such as file editing, code
compilation, data backup, and job submission

•  These nodes provide a full SUSE Linux environment, complete with
compilers, tools, and libraries

•  The login nodes should not be used to run production jobs.
Production work should be performed on the systems compute
resources.

•  Serial jobs (post-processing, etc) may be run on the compute nodes
as long as they are statically linked (will be discussed later)

Go to Menu

19

Compute (Batch) Nodes

•  All MPI/OpenMP user applications execute on batch or compute
nodes

•  Batch nodes provide limited Linux environment – Compute Node
Linux (CNL)

•  Compute nodes can see only the Lustre scratch directories

•  Access to compute resources is managed by the PBS/TORQUE –
batch system manager

•  Job scheduling is handled by Moab, which interacts with PBS/
TORQUE and the XT system software.

Go to Menu

20

Outline: File Systems

–  Basics

–  User’s Directories

–  High Performance Storage System (HPSS)

–  Lustre Filesystem

Go to Menu

21

File Systems: Basics

•  The Network File Service (NFS) server contains user's home directories,
project directories, and software directories .

•  Compute nodes can only see the Lustre work space
–  The NFS-mounted home, project, and software directories are not

accessible to the compute nodes.
•  Shared Lustre area (SPIDER) is now available on compute nodes and is the

only scratch area for the XT5.
•  Executables must be executed from within the Lustre work space:

–  /tmp/work/$USER (XT4 and XT5)
–  /lustre/scr144/$USER (XT4 only)

•  Batch jobs can be submitted from the home or work space. If submitted
from a user’s home area, a batch script should cd into the Lustre work
space directory (cd $PBS_O_WORKDIR) prior to running the executable
through aprun.

•  All input must reside in the Lustre work space
•  All output must also be sent to the Lustre work space

Go to Menu

22

File Systems: User’s Directories

•  Home directory - NFS Filesystem
 /ccs/home/$USER

•  Work directory/Scratch space - Lustre Filesystem
 /tmp/work/$USER

•  Project directory - NFS Filesystem
 /ccs/proj/projectid

•  HPSS storage

Each user is provided the following space resources:

Go to Menu

23

File Systems: Home Directory

•  Each user is provided a home directory to store frequently used
items such as source code, binaries, and scripts. Home directories
are located in a Network File Service (NFS) that is accessible from
all NCCS resources.

•  Home directory - NFS Filesystem

 Location: /ccs/home/$USER

•  Accessible from all NCCS systems
•  NFS does not provide the highest performance
•  Default storage limit of 2 GB
•  To find your quota and usage in NFS, use the quota command
•  Regularly backed up

Go to Menu

24

File Systems: Work Directory

•  Work space is available on each NCCS high-performance computing
(HPC) system for temporary files and for staging large files from and to the
High Performance Storage System (HPSS). To ensure adequate work space
is available for user’s jobs, a script that finds and deletes old files runs on
the system nightly. Thus, it is critical to archive files from the scratch area
as soon as possible.

•  Work directory/Scratch space - Lustre Filesystem
 /tmp/work/$USER (both XT4 and XT5)
 /lustre/scr144/$USER (local, XT4 only)

•  The path /tmp/work/$USER is available on all NCCS HPC systems.
•  On the NCCS Cray XT4 (jaguar), Cray XT5 (jaguarpf), Data Analysis

Cluster (lens), and Development Cluster (smoky), the /tmp/work/$USER
path points to the same shared lustre area. On the IBM Blue Gene/P
(eugene) the link points to a local area within the system’s General Parallel
File System (GPFS).

•  Not backed up!

Go to Menu

25

File Systems: Project Directory

•  Each project is provided a directory shared by the project to
store data such as source code, binaries, and scripts. Project
directories are located in a Network File Service (NFS) that is
accessible from all NCCS resources.

•  Project directory - NFS Filesystem

 Location: /ccs/proj/projectid

•  Accessible from all NCCS systems
•  Default storage limit of 5 GB
•  By default, project directories are created with 770

permissions and the project ID group as the group owner.

Go to Menu

26

File Systems: Node-local System

Node-local Filesystem

•  Location: /tmp

•  The path /tmp/work/$USER is available on all NCCS
HPC systems, but it points to a different file system.

•  Do not create files directly in the /tmp directory!

•  The /tmp file system itself is quite small, and when /
tmp fills up, the system problems result.

Go to Menu

27

•  HPSS is an archival Back-up system which consists of
–  two types of storage technology:

•  disk – “on-line” for frequently/recently accessed files
•  tape – “off-line” for very large or infrequently accessed files

–  Linux servers
–  High Performance Storage System software

•  Tape storage is provided by robotic tape libraries.
•  HPSS has three SL8500 tape libraries. Each can hold up to 10,000 cartridges.
•  The StorageTek SL8500 libraries house a total of

–  twenty-four T10000A tape drives (500 gigabyte cartridges, uncompressed)
–  thirty-six T10000B tape drives (1 terabyte cartridges, uncompressed).

•  Each drive has a bandwidth of 120 MB/s
•  As of October, 2009, HPSS has 7.2 PB stored in over 16.1 million files.

File Systems: High Performance Storage
System (HPSS)

Go to Menu

28

File Systems: Using hsi and htar on HPSS

•  Each user of an NCCS system is provided an account on the HPSS. The
user’s login name for HPSS is the same as for all other NCCS systems.
Authorization to HPSS is by means of the user’s SecurID token.

•  Users are encouraged to use hsi when dealing with a small number of
files, and htar for large numbers of files.

•  The hsi utility provides the ability to access and transfer data to and from
the NCCS HPSS for both disk and tape file systems. Issuing the command
hsi will start HSI in interactive mode.

•  Information on HSI may be found from the NCCS systems through the
command
–  hsi help

•  The htar command – works like Unix “tar”
•  Below is an example of storing and getting a bunch of files in a directory

using tar and HSI. HSI can read from standard input and write to standard
output:
–  tar cvf - . | hsi put - : <filename.tar>
–  hsi get - : <filename.tar> | tar xvf -

Go to Menu

29

•  “Spider” provides a shared, parallel file system for all LCF systems
–  Based on Lustre file system

•  Over 10 PB of RAID-6 Capacity
–  13,440 1Gb SATA Drives (10,652 for production and 2,688 for parity)

•  48 caplets * 28 tiers/caplet * 10 discs/tier = 13,440 SATA discs
•  33 tons of discs:-)

–  192 Open Storage Servers (OSS) and 1344 Object Storage Targets (OST)
•  192 OSSs * 7 OSTs/OSS = 1344 OSTs

–  3 Terabytes of memory
•  Demonstrated bandwidth of over 200 GB/s (244 Gb/s aggregate R/W)

–  30,000 files created per second
•  Demonstrated stability on a number of LCF Systems

–  Over 26,000 lustre clients at NCCS mounting the file system and
performing I/O

•  Available from all systems via our high performance scalable I/O network
–  4 InfiniBand core switches
–  Over 3,000 InfiniBand ports
–  Over 3 miles of cables

File Systems: Center-wide File System
(SPIDER)

Go to Menu

30

File Systems: Lustre Filesystem and
liblustre

•  Parallel, object-based filesystem that aggregates a number of storage
servers together to form a single coherent file system that can be accessed
by a client system. The Lustre file system is made up of an underlying set
of file systems called Object Storage Targets (OST's), which are essentially
a set of parallel IO servers.

•  When running on compute node, only Lustre filesystem is accesible
–  Exception: stdin, stdout and stderr are mapped through aprun

•  Best way to do I/O on compute nodes without going back out through
aprun (thereby throttling I/O badly): using liblustre

•  Lustre module is currently loaded by default
–  Linked in when you build executable

•  Do not unload Lustre module.
•  Use the ftn, cc, and CC wrappers to compile

Go to Menu

31

File Systems: Lustre Filesystem - a Bigger
Picture

Go to Menu

32

File Systems: Striping on Lustre Filesystem

•  A file is said to be striped when read and write operations access multiple
OST's concurrently. File striping is a way to increase IO performance since
writing or reading from multiple OST's simultaneously increases the
available I/O bandwidth

•  Striping will likely have little impact for the following IO patterns:
–  Serial IO where a single processor or node performs all of the IO for an

application.
–  Multiple nodes perform IO, access files at different times.
–  Multiple nodes perform IO simultaneously to different files that are small

(each < 100 MB).
•  You can change the striping pattern across the OSTs on a per directory basis

yourself
–  Default stripe width is 4

•  You should have a good understanding of how and how much your
application outputs before you attempt this!

Go to Menu

33

Lustre Filesystem: Striping on Lustre
Filesystem (cont…)

•  You should think of striping as “preparing the ground for I/O.”
–  The striping occurs the next time you write to the directory/file
–  If you change the settings for an existing directory, you will need to copy

the files elsewhere and then copy them back to inherit the new settings
• lfs getstripe filename will tell you the striping information for a

file
– lfs find -v <dir/file> is equivalent

• lfs setstripe <dir> size start number
–  Defaults: -s 1M -c 4 –i -1
– lfs setstripe <dir> 0 -1 1 means no striping
–  Caution: You can fill up individual OSTs!

• lfs setstripe
– Stripe size
– Stripe count
– Stripe index

lfs setstripe
– s (default:1M, k, M, G)
– c 5 (default 4, -1 All)
– i 0 (default: -1 round robin)
<file | directory>

Go to Menu

34

Outline: Software Environment

–  Defaults

–  Modules

–  module command

Go to Menu

35

Software Environment: Defaults

•  Default software environment automatically loaded
when user logs in (Nov. 2009):
– PGI 9.0.4
– Libsci 10.4.0
– MPT 3.5.0
– Etc.

•  What if…
– Not all software necessary for your work is

automatically loaded
– You need another version of loaded software
– Default software incompatible with your work?

Go to Menu

36

Software Environment: Modules

•  Software is loaded, unloaded or swapped using
modules.

•  Use of modules allows software, libraries, paths, etc.
to be cleanly entered into and removed from your
programming environment.

•  Conflicts are detected and module loads that would
cause conflicts are not allowed.

Go to Menu

37

Software Environment: module command

Loading Commands Informational Commands

•  module [load||unload]
my_module
–  Loads/Unloads module
my_module

–  e.g., module load
subversion

•  module swap module#1
module#2
–  Replaces module#1 with
module#2

–  e.g., module swap
PrgEnv-pgi PrgEnv-gnu

•  module help my_module
–  Lists available commands and

usage

•  module show my_module
–  Displays the actions upon loading
my_module

•  module list
–  Lists all loaded modules

•  module avail [name]
–  Lists all modules [beginning with
name]

–  e.g., module avail gcc

Go to Menu

38

Software Environment: module list

username@jaguarpf-login1:/> module list
Currently Loaded Modulefiles:
 1) modules/3.1.6
 2) DefApps
 3) torque/2.4.1b1-snap.200905191614
 4) moab/5.3.6
 5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul
 6) cray/MySQL/5.0.64-1.0000.2342.16.1
 7) xtpe-target-cnl
 8) xt-service/2.2.41A
 9) xt-os/2.2.41A
 10) xt-boot/2.2.41A
 11) xt-lustre-ss/2.2.41_1.6.5
 12) cray/job/1.5.5-0.1_2.0202.18632.46.1
 13) cray/csa/3.0.0-1_2.0202.18623.63.1
 14) cray/account/1.0.0-2.0202.18612.42.3
 15) cray/projdb/1.0.0-1.0202.18638.45.1
 16) Base-opts/2.2.41A
 17) pgi/9.0.4
 18) xt-libsci/10.4.0
 19) xt-mpt/3.5.0
 20) xt-pe/2.2.41A
 21) xt-asyncpe/3.2
 22) PrgEnv-pgi/2.2.41A

Go to Menu

39

Software Environment: module show pgi

username@jaguarpf-login1:/> module show pgi

/opt/modulefiles/pgi/9.0.4:

setenv PGI_VERSION 9.0
setenv PGI_VERS_STR 9.0.4
setenv PGI_PATH /opt/pgi/9.0.4
setenv PGI /opt/pgi/9.0.4
prepend-path PGROUPD_LICENSE_FILE /opt/pgi/license.dat
prepend-path PATH /opt/pgi/9.0.4/linux86-64/9.0/bin
prepend-path MANPATH /opt/pgi/9.0.4/linux86-64/9.0/man
prepend-path LD_LIBRARY_PATH /opt/pgi/9.0.4/linux86-64/9.0/lib
prepend-path LD_LIBRARY_PATH /opt/pgi/9.0.4/linux86-64/9.0/libso
module-whatis PGI compiler for use on XTs

Go to Menu

40

Outline: Compiling

–  System Compilers

–  Parallel Compiling on Jaguar

–  Wrappers and Compiling Tips

–  Available Compilers (Serial compilers)

–  Useful Compiler Flags

Go to Menu

41

Compiling: System Compilers

The following compilers should be used to build codes on Jaguar!
Use these compilers!

Language Compiler

C cc

C++ CC

Fortran 77, 90 and 95 ftn

Note that cc, CC and ftn are actually the Cray XT Series wrappers for
invoking the PGI, GNU or Pathscale compilers (discussed later…)

Go to Menu

42

Compiling: Parallel Compiling on Jaguar

•  Jaguar has two kinds of nodes:
–  Compute Nodes running the CNL OS
–  Service and login nodes running Linux

•  To build a code for the compute nodes, you should use the Cray wrappers
cc, CC, and ftn. The wrappers will call the appropriate compiler which
will use the appropriate header files and link against the appropriate
libraries. Use of wrappers is crucial for building the parallel codes on Cray.

•  We highly recommend that the cc, CC, and ftn wrappers be used when
building for the compute nodes! Both parallel and serial codes!

•  To build a code for the Linux service nodes, you should call the compilers
directly.

•  We strongly suggest that you don’t call the compilers directly if you are
building code to run on the compute nodes!

•  No long serial jobs should be run on service nodes, use compute nodes
instead!

Go to Menu

43

Compiling: Wrappers and Compiling Tips

•  Why to use wrappers to build (compile and link) the code:
–  Automatically point to correct compiler based on modules

loaded
–  Wrappers automatically find and include paths and libraries

of loaded modules (e.g., mpi, libsci)

•  Use same makefile for all compilers*

•  Calling base compilers directly (e.g., pgf90) results in serial
code that runs only on login nodes
–  Not what you want! Use wrapper instead and run on

compute nodes

* Except compiler-specific flags

Go to Menu

44

Compiling: Available Compilers (Serial
compilers)

•  Available compilers:

–  Portland Croup (PGI). Module name: PrgEnv-pgi
ь  pgcc
ь  pgCC
ь  pgf90/pgf95
ь  pgf77

–  GNU. Module name: PrgEnv-gnu
ь  gcc
ь  g++
ь  gfortran

–  Pathscale. Module name: PrgEnv-pathscale
ь  pathcc
ь  pathCC
ь  path90/pathf95 (only available if gcc/4.2.1 or higher is loaded)

–  Intel. Module name: PrgEnv-intel
ь  icc (c/c++ codes)
ь  ifort

–  Cray compilers. Module name: PrgEnv-cray

Go to Menu

45

Compiling: Default Compilers

•  Default compiler is PGI. The list of all packages is obtained by
–  module avail PrgEnv

•  To use the Cray wrappers with other compilers the programming
environment modules need to be swapped, i.e.
–  module swap PrgEnv-pgi PrgEnv-gnu
–  module swap PrgEnv-pgi PrgEnv-cray

•  To just use the GNU/Cray compilers directly load the GNU/Cray
module you want:
–  module load PrgEnv-gnu/2.1.50HD
–  module load PrgEnv-cray/1.0.1

•  It is possible to use the GNU compiler versions directly without
loading the Cray Programming Environments, but note that the Cray
wrappers will probably not work as expected if you do that.

Go to Menu

46

Compiling: Useful Compiler Flags (PGI)

General:
Flag Comments

-mp=nonuma Compile multithreaded
code using OpenMP
directives

Debugging:
Flag Comments

-g For debugging
symbols; put first

-Ktrap=fp Trap floating point
exceptions

-Mchkptr Checks for unintended
dereferencing of null
pointers Optimization:

Flag Comments
-fast Equivalent to -Mvect=sse -Mscalarsse

-Mcache_align -Mflushz
-fastsse Same as -fast
-Mcache_align Makes certain that arrays are on cache line boundaries
-Munroll=c:n Unrolls loops n times (e.g., n=4)
-Mipa=fast,inline Enables interprocedural analysis (IPA) and inlining,

benefits for C++ and Fortran
-Mconcur Automatic parallelization

Go to Menu

47

Compiling: Useful Compiler Flags (GNU)

Flag Comment
-fopenmp Compile multithreaded

code using OpenMP
directives

Flag Comment
-g For debugging

symbols; put first
-finstrument-
functions

For using CrayPat

-fbounds-
check

Enable generation
of runtime checks
for array subscripts

General: Debugging:

pathopt2 utility can help identify compiler options that give best optimization

Flag Comments
-O2 –ffast -math –fomit -frame
-pointer -mfpmath=sse

Recommended first compile/run

-mfpmath=sse Use scalar floating point instructions
present in SSE instruction set

-finline –functions Inline simple functions (turned on
automatically by -O3)

-funroll -loops --param max
-unroll -times=n

Unrolls loops n times (e.g., n=4)

Optimization:

Go to Menu

48

Compiling: Useful Compiler Flags
(Pathscale)

General:
Flag Comments

-mp Compile multithreaded
code using OpenMP
directives (NOTE:
limited support for C++
at this time)

Flag Comments

-g For debugging symbols; put first
-LNO:simd_
verbose=on

Get diagnostics

-trapuv Initialize variables to NaN – useful
for finding uninitialized variables

-zerouv Initialize variables to 0

Debugging:

Flag Comments

-O3 -
OPT:Ofast

Recommended first compile/run

-OPT:Ofast Maximizes performance; generally safe but may impact floating
point correctness. Equivalent to –
OPT:ro=2:Olimit=0:div_split=ON:alias=typed

-Ofast Equivalent to -O3 -ipa -OPT:Ofast -fno-math-errno
-ipa Enables interprocedural analysis (IPA) and inlining
-apo Enables autoparallelization

Optimization:

Go to Menu

49

Outline: Running Jobs
–  Introduction
–  Glossary
–  Batch Scripts
–  Submitting Batch Jobs
–  Interactive Batch Jobs
–  PBS Options
–  PBS Environment Variables
–  Altering Batch Jobs
–  Monitoring Job Status
–  Job Execution
–  Memory Affinity
–  Threads
–  MPI Task Layout
–  Single-Processor (Serial) Jobs

Go to Menu

50

Running Jobs: Introduction

•  When you log into Jaguar, you are placed on one of the login nodes.

•  Login nodes should be used for basic tasks such as file editing, code
compilation, data backup, and job submission.

•  The login nodes should not be used to run production jobs. Production
work should be performed on the system’s compute resources.

•  On Jaguar, access to compute resources is managed by the PBS/TORQUE.
Job scheduling and queue management is handled by Moab which interacts
with PBS/TORQUE and the XT system software.

•  Users either submit the job scripts for batch jobs, or submit a request for
interactive job.

•  The following pages provide information for getting started with the batch
facilities of PBS/TORQUE with Moab as well as basic job execution.

Go to Menu

51

Running Jobs: Glossary

•  PBS/TORQUE is an open source resource manager providing
control over batch jobs and distributed compute nodes. It is a
community effort based on the original PBS project.

•  Portable Batch System (or simply PBS) is the computer
software that performs job scheduling. Its primary task is to
allocate computational tasks, i.e., batch jobs, among the
available computing resources. PBS is supported as a job
scheduler mechanism by Moab.

•  Batch jobs are set up so they can be run to completion without
human interaction, so all input data is preselected through
scripts or command-line parameters. This is in contrast to
"online" or interactive programs which prompt the user for
such input.

Go to Menu

52

Running Jobs: Batch Scripts

•  Batch scripts can be used to run a set of commands on a
systems compute partition.

•  The batch script is a shell script containing PBS flags and
commands to be interpreted by a shell.

•  Batch scripts are submitted to the batch manager, PBS,
where they are parsed. Based on the parsed data, PBS
places the script in the queue as a job.

•  Once the job makes its way through the queue, the script
will be executed on the head node of the allocated
resources.

Go to Menu

53

Running Jobs: Example Batch Script

1: #!/bin/bash
2: #PBS -A XXXYYY
3: #PBS -N test
4: #PBS -j oe
5: #PBS -l walltime=1:00:00,size=192
6:
7: cd $PBS_O_WORKDIR
8: date
9: aprun -n 192 ./a.out

This batch script can be broken down into the following sections:
•  Shell interpreter

•  Line 1
•  Can be used to specify an interpreting shell.

•  PBS commands
•  The PBS options will be read and used by PBS upon

submission.
•  Lines 2–5

•  2: The job will be charged to the XXXYYY project.
•  3: The job will be named “test.”
•  4: The jobs standard output and error will be combined.
•  5: The job will request 192 cores for 1 hour.

•  Please see the PBS Options page for more options.
•  Shell commands

•  Once the requested resources have been allocated, the shell
commands will be executed on the allocated nodes head
node.

•  Lines 6–9
•  6: This line is left blank, so it will be ignored.
•  7: This command will change directory into the script's

submission directory. We assume here that the job was
submitted from a directory in /lustre/scratch/.

•  8: This command will run the date command.
•  9: This command will run the executable a.out on 192

cores with a.out.

NOTE: Since users cannot share
nodes, size requests must be
Ш a multiple of 4 on the XT4 or
Ш a multiple of 12 on the XT5.

Go to Menu

54

Running Jobs: Submitting Batch Jobs - qsub

•  All job resource management handled by Torque.

•  Batch scripts can be submitted for execution using the
qsub command.

•  For example, the following will submit the batch script
named test.pbs:

 qsub test.pbs

•  If successfully submitted, a PBS job ID will be returned.
This ID can be used to track the job.

Go to Menu

55

Running Jobs: Interactive Batch Jobs

•  Batch scripts are useful for submitting a group of commands, allowing them to run
through the queue, then viewing the results. It is also often useful to run a job
interactively. However, users are not allowed to directly run on compute resources
from the login module. Instead, users must use a batch-interactive PBS job. This is
done by using the -I option to qsub.

•  For interactive batch jobs, PBS options are passed through qsub on the command line:

 qsub -I -A XXXYYY -q debug -V -l size=24,walltime=1:00:00

 This request will…
 -I Start an interactive session
 -A Charge to the “XXXYYY” project
 -q debug Run in the debug queue
 -V Import the submitting users environment
 -l size=24,walltime=1:00:00 Request 24 compute cores for one hour

Go to Menu

56

Running Jobs: PBS Options

Option Use Description

A #PBS -A <account>

Causes the job time to be charged to <account>. The account string
XXXYYY is typically composed of three letters followed by
three digits and optionally followed by a subproject identifier.
The utility showusage can be used to list your valid assigned
project ID(s). This is the only option required by all jobs.

l #PBS -l size=<cores>
Maximum number of compute cores. Must request an entire node

(multiples of 4 on the XT4, and 12 on the XT5).

#PBS -l
walltime=<time>

Maximum wall-clock time. <time> is in the format HH:MM:SS.
Default is 45 minutes.

Necessary PBS options:

Go to Menu

57

Running Jobs: PBS Options (cont.)
Commonly used, but not necessary PBS Options:

Option Use Description

l #PBS -l feature=<target>

Run only on the specified target. Currently the available target is XT5 with 1 or 2
GB of memory per node. The default is to run on the first available. It is
recommended to use the default. The other option is to specify "2gbpercore" to
run on 16 GB nodes only.

o #PBS -o <name>
Writes standard output to <name> instead of <job script>.o$PBS_JOBID.
$PBS_JOBID is an environment variable created by PBS that contains the PBS
job identifier.

e #PBS -e <name> Writes standard error to <name> instead of <job script>.e$PBS_JOBID.

j #PBS -j {oe,eo}
Combines standard output and standard error into the standard error file (eo) or
the standard out file (oe).

m #PBS -m a Sends email to the submitter when the job aborts.

#PBS -m b Sends email to the submitter when the job begins.

#PBS -m e Sends email to the submitter when the job ends.

M #PBS -M <address> Specifies email address to use for -m options.

N #PBS -N <name> Sets the job name to <name> instead of the name of the job script.

S #PBS -S <shell> Sets the shell to interpret the job script.

q #PBS -q <queue>
Directs the job to the specified queue.This option is not required to run in the
general production queue.

V #PBS -V Exports all environment variables from the submitting shell into the batch shell.

Go to Menu

58

Running Jobs: PBS Environment Variables
•  PBS_O_WORKDIR

–  PBS sets the environment variable PBS_O_WORKDIR to the directory
where the batch job was submitted.

–  By default, a job starts in your home directory.
–  Include the following command in your script if you want it to start in

the submission directory:

 cd $PBS_O_WORKDIR

•  PBS_JOBID
–  PBS sets the environment variable PBS_JOBID to the job's ID.
–  A common use for PBS_JOBID is to append the job's ID to the

standard output and error file(s), such as the following:

 PBS -o scriptname.o$PBS_JOBID

•  PBS_NNODES
–  PBS sets the environment variable PBS_NNODES to the number of

cores requested. This means that number of nodes requested on a 12-
core architecture would be $PBS_NNODES/12.

Go to Menu

59

•  Command: qdel
–  Jobs in the queue in any state can be stopped and removed from the queue

using the command qdel.
–  For example, to remove a job with a PBS ID of 1234, use the following

command: qdel 1234

•  Command: qhold
–  Jobs in the queue in a non-running state may be placed on hold using the qhold

command. Jobs placed on hold will not be removed from the queue, but they
will not be eligible for execution.

–  For example, to move a currently queued job with a PBS ID of 1234 to a hold
state, use the following command: qhold 1234

•  Command: qrls
–  Once on hold the job will not be eligible to run until it is released to return to a

queued state. The qrls command can be used to remove a job from the held
state.

–  For example, to release job 1234 from a held state, use the following command:
qrls 1234

Running Jobs: Altering Batch Jobs –
qdel,qhold,qrls

Go to Menu

60

•  Command: qalter
–  Non-running jobs in the queue can be modified with the PBS qalter

command. Please note: Jobs in a running state cannot be altered.
–  The following uses job 130494 as an example:

> qstat -a 130494nid03588: ORNL/CCS
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS Tasks Memory Time S Time
------ -------- ----- ------- ------ --- ----- ------ ---- - ----

130494.nid03588 cfuson debug t1 -- 1 4300 0b 00:10 Q --
>

•  Modify the job’s name
–  qalter -N newname 130494

•  Modify the number of requested cores
–  qalter -l size=4800 130494

•  Modify the job’s wall time
–  qalter -l walltime=01:00:00 130494

Running Jobs: Altering Batch Jobs – qalter

Go to Menu

61

Running Jobs: Monitoring Job Status - qstat
PBS and Moab provide multiple tools to view queue, system, and job statuses.
Command: qstat
Use qstat -a to check the status of submitted jobs:
nid00004:
 Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS Tasks Memory Time S Time
------ -------- ----- ------- ------ --- ----- ------ ----- - -----
29668 user1 batch job2 21909 1 256 -- 08:00 R 02:28
29894 user2 batch run128 -- 1 128 -- 02:30 Q -–
29895 user3 batch STDIN 15921 1 1 -- 01:00 R 00:10
29896 user2 batch jobL 21988 1 2048 -- 01:00 R 00:09
29897 user4 debug STDIN 22367 1 2 -- 00:30 R 00:06
29898 user1 batch job1 25188 1 1 -- 01:10 C 00:00

Job ID PBS assigned job ID.
Username Submitting user’s user ID.
Queue Queue into which the job has been submitted.
Jobname PBS job name. This is given by the PBS -n option in

 the PBS batch script. Or, if the -n option is not used,
 PBS will use the name of the batch script.

SessID Associated session ID.
NDS PBS node count. Not accurate; will be one.
Tasks Number of cores requested by the job’s -size option.
Req’d Memory Job’s requested memory.
Req’d Time Job’s given wall time.
S Job’s current status. See the status listings below.
Elap Time Job’s time spent in a running status. If a job is not currently

 or has not been in a run state, the field will be blank.

Status Meaning
Value

E Exiting after having run
H Held
Q Queued; eligible to run
R Running
S Suspended
T Being moved to new location
W Waiting for its execution time
C Recently completed (within the

 last 5 minutes)

Go to Menu

62

Running Jobs: showq, checkjob

Command : showq
The Moab utility showq gives a more detailed description of the queue and displays it
in the following states:
Active These jobs are currently running.
Eligible These jobs are currently queued awaiting resources. A user is allowed five jobs in

the eligible state.
Blocked These jobs are currently queued but are not eligible to run. Common reasons for

jobs in this state are jobs on hold, the owning user currently having five jobs in the
eligible state, and running jobs in the longsmall queue.

Command : checkjob
The Moab utility checkjob can be used to view details of a job in the queue.
For example, if job 736 is a job currently in the queue in a blocked state, the following can be
used to view why the job is in a blocked state:
checkjob 736 The return may contain a line similar to the following:
BlockMsg: job 736 violates idle HARD MAXJOB limit of 2 for

user (Req: 1 In Use: 2)
This line indicates the job is in the blocked state because the owning user has reached the
limit of two jobs currently in the eligible state.

Go to Menu

63

Running Jobs: showstart, showbf,
xtprocadmin

Command : showstart
The Moab utility showstart gives an estimate of when the job will start.
showstart 100315
job 100315 requires 16384 procs for 00:40:00
Estimated Rsv based start in 15:26:41 on Fri Sep 26 23:41:12

Estimated Rsv based completion in 16:06:41 on Sat Sep 27 00:21:12
Since the start time may change dramatically as new jobs with higher priority are
submitted, so you need to periodically rerun the command.

Command : showbf
The Moab utility showbf gives the current backfill. This can help to build a job which
can be backfilled immediately. As such, it is primarily useful for small jobs.

Command : xtprocadmin
The utility xtprocadmin can be used to see what jobs are currently running and
which nodes they are running on.

Go to Menu

64

Running Jobs: Job Execution - aprun

•  By default, commands will be executed on the job’s
associated service node.

•  The aprun command is used to execute a job on one
or more compute nodes.

•  The XT’s layout should be kept in mind when
running a job using aprun. The XT5 partition
currently contains two hex-core processors (a total of
12 cores) per compute node. While the XT4 partition
currently contains one quad-core processor (a total of
4 cores) per compute node.

•  The PBS size option requests compute cores.

Go to Menu

65

Running Jobs: Job Execution – Service
Node

•  The PBS script is executed on the aprun node (or
login node for interactive jobs).

•  If executables are called directly (eg ./a.out), they will
be run serially on the service node. This may be
useful for records keeping, staging data, etc.

•  Please run any memory- or computationally-intensive
programs using aprun, otherwise it bogs down the
node, and may cause system problems.

•  You may run non-MPI (serial) programs on a
compute node using aprun (discussed later).

Go to Menu

66

Running Jobs: Basic aprun options

Option Description

-D Debug (shows the layout aprun will use)

-n
Number of MPI tasks.
Note: If you do not specify the number of tasks to aprun, the system will default to 1.

-N

Number of tasks per Node. (XT5: 1 – 12) and (XT4: 1 – 4)
NOTE: Recall that the XT5 has two Opterons per compute node. On the XT5, to place one task per
quad-core Opteron, use -S 1 (not -N 1 as on the XT4). On the XT4, because there is only one Opteron
per node, the -S 1 and -N1 will result in the same layout.

-m
Memory required per task. Default:
4-core, 8-GB Cray XT4 nodes (8 GB / 4 CPUs = 2 GB)
XT4: A maximum of 2GB per core; 2.1GB will allocate two cores for the task

-d

Number of threads per MPI task.
Note: As of CLE 2.1, this option is very important. If you specify OMP_NUM_THREADS but do not
give a -d option, aprun will allocate your threads to a single core. You must use
OMP_NUM_THREADS to specify the number of threads per MPI task, and you must use -d to tell
aprun how to place those threads.

-S Number of PEs to allocate per NUMA node.

-ss Strict memory containment per NUMA node.

Go to Menu

67

Running Jobs: XT5 example

aprun –n 24 ./a.out will run a.out across 24 cores. This requires two compute
nodes. The MPI task layout would be as follows:

Compute Node 1

Opteron 0 Opteron 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

0 1 2 3 4 5 6 7 8 9 10 11

The following will place tasks in a round robin fashion.
> setenv MPICH_RANK_REORDER_METHOD 0
> aprun -n 24 a.out

Compute Node 2

Opteron 0 Opteron 1

Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5

12 13 14 15 16 17 18 19 20 21 22 23

Rank 0, Node 1, Opteron 0, Core 0
Rank 1, Node 2, Opteron 0, Core 0
Rank 2, Node 1, Opteron 0, Core 1
Rank 3, Node 2, Opteron 0, Core 1
Rank 4, Node 1, Opteron 0, Core 2
Rank 5, Node 2, Opteron 0, Core 2
Rank 6, Node 1, Opteron 0, Core 3
Rank 7, Node 2, Opteron 0, Core 3
Rank 8, Node 1, Opteron 0, Core 4
Rank 9, Node 2, Opteron 0, Core 4
Rank 10, Node 1, Opteron 0, Core 5
Rank 11, Node 2, Opteron 0, Core 5

Rank 0, Node 1, Opteron 1, Core 0
Rank 1, Node 2, Opteron 1, Core 0
Rank 2, Node 1, Opteron 1, Core 1
Rank 3, Node 2, Opteron 1, Core 1
Rank 4, Node 1, Opteron 1, Core 2
Rank 5, Node 2, Opteron 1, Core 2
Rank 6, Node 1, Opteron 1, Core 3
Rank 7, Node 2, Opteron 1, Core 3
Rank 8, Node 1, Opteron 1, Core 4
Rank 9, Node 2, Opteron 1, Core 4
Rank 10, Node 1, Opteron 1, Core 5
Rank 11, Node 2, Opteron 1, Core 5

Go to Menu

68

Running Jobs: XT4 example

aprun -n8 a.out will run the MPI executable a.out on a total of eight cores, four cores on
two compute nodes. The MPI tasks will be allocated in the following sequential fashion:

Compute Node 1

Opteron 0

Core 0 Core 1 Core 2 Core 3

0 1 2 3

The following will place tasks in a
round robin fashion.
> setenv MPICH_RANK_REORDER_METHOD 0
> aprun -n 8 a.out
Rank 0, Node 1, Opteron 0, Core 0
Rank 1, Node 2, Opteron 0, Core 0
Rank 2, Node 1, Opteron 0, Core 1
Rank 3, Node 2, Opteron 0, Core 1
Rank 4, Node 1, Opteron 0, Core 2
Rank 5, Node 2, Opteron 0, Core 2
Rank 6, Node 1, Opteron 0, Core 3
Rank 7, Node 2, Opteron 0, Core 3

Compute Node 2

Opteron 0

Core 0 Core 1 Core 2 Core 3

0 1 2 3

Go to Menu

69

Running Jobs: Memory Affinity

•  Each Opteron CPU on a node and its memory is organized into a NUMA node.
•  Memory Affinity - each XT5 (XT4) node contains two (one) NUMA nodes.
•  Applications may use resources from one or both NUMA nodes. The following aprun

options allow control of application NUMA node use.
-S pes_per_numa_node

 Number of PEs to allocate per NUMA node, pes_per_numa_node can be 1, 2, 3, or 4.
-ss

 is the option for strict memory containment per NUMA node.
•  -ss option: The default is to allow remote NUMA node memory access. This option prevents

memory access of the remote NUMA node. Because the XT4 has only one NUMA node per
node, this option does not apply to the XT4.

XT5 Example:
The following will run a.out on 4 cores,
one core per NUMA node.

aprun -n 4 -S 1 a.out

Rank 0, Node 0, Opteron 0, Core 0
Rank 1, Node 0, Opteron 1, Core 0
Rank 2, Node 1, Opteron 0, Core 0
Rank 3, Node 1, Opteron 1, Core 0

XT4 Example:
The following will run a.out on 4 cores,
all will be on one NUMA node.

aprun -n 4 -S 4 a.out

Rank 0, Node 0, Opteron 0, Core 0
Rank 1, Node 0, Opteron 0, Core 1
Rank 2, Node 0, Opteron 0, Core 2
Rank 3, Node 0, Opteron 0, Core 3

Go to Menu

70

Running Jobs: Threads

•  The system supports threaded programming within a compute node.

•  On the XT5, threads may span both Opterons within a single
compute node, but cannot span compute nodes.

•  Users have a great deal of flexibility in thread placement. Several
examples are shown below.

•  Note: Under CNL 2.1, threaded codes must use the

 aprun -d depth option

 The -d option specifies the number of threads per task. Without the
option all threads will be started on the same core. Under previous
CNL versions the option was not required. The number of cores
used is calculated by multiplying the value of -d by the value of -n.

•  Focus of this discussion will be OpenMP threads

Go to Menu

71

Running Jobs: Threads – XT5 Example 1
These examples are written for bash. If using csh/tcsh, you should change the
export OMP_NUM_THREADS = x lines to setenv OMP_NUM_THREADS x

 export OMP_NUM_THREADS=12
 > aprun -n2 –d12 a.out
 Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
 Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
 Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
 Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
 Rank 0, Thread 4, Node 0, Opteron 0, Core 4 <-- slave
 Rank 0, Thread 5, Node 0, Opteron 0, Core 5 <-- slave
 Rank 0, Thread 6, Node 0, Opteron 1, Core 6 <-- slave
 Rank 0, Thread 7, Node 0, Opteron 1, Core 1 <-- slave
 Rank 0, Thread 8, Node 0, Opteron 1, Core 2 <-- slave
 Rank 0, Thread 9, Node 0, Opteron 1, Core 3 <-- slave
 Rank 0, Thread 10,Node 0, Opteron 1, Core 4 <-- slave
 Rank 0, Thread 11,Node 0, Opteron 1, Core 5 <-- slave
 Rank 1, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
 Rank 1, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
 Rank 1, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
 -----//--------//------//---------//------//---------
 Rank 1, Thread 9, Node 1, Opteron 1, Core 3 <-- slave
 Rank 1, Thread 10,Node 1, Opteron 1, Core 4 <-- slave
 Rank 1, Thread 11,Node 1, Opteron 1, Core 5 <-- slave

Example 1: Launch 2 MPI tasks, each with 12 threads (this requests 2 compute nodes
and requires a size request of 24):

Go to Menu

72

Running Jobs: Threads – XT5 Example 2

•  Example 2: Launch 4 MPI tasks, each with 6 threads. Place 1 MPI task per Opteron (this requests 2
compute nodes and requires a size request of 24):

 export OMP_NUM_THREADS=6
 > aprun -n4 –d6 -S1 a.out
 Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
 Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
 Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
 Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
 Rank 0, Thread 4, Node 0, Opteron 0, Core 4 <-- slave
 Rank 0, Thread 5, Node 0, Opteron 0, Core 5 <-- slave
 Rank 1, Thread 0, Node 0, Opteron 1, Core 0 <-- MASTER
 Rank 1, Thread 1, Node 0, Opteron 1, Core 1 <-- slave
 Rank 1, Thread 2, Node 0, Opteron 1, Core 2 <-- slave
 Rank 1, Thread 3, Node 0, Opteron 1, Core 3 <-- slave
 Rank 1, Thread 4, Node 0, Opteron 1, Core 4 <-- slave
 Rank 1, Thread 5, Node 0, Opteron 1, Core 5 <-- slave
 Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
 Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
 Rank 2, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
 Rank 2, Thread 3, Node 1, Opteron 0, Core 3 <-- slave
 Rank 2, Thread 4, Node 1, Opteron 0, Core 4 <-- slave
 Rank 2, Thread 5, Node 1, Opteron 0, Core 5 <-- slave
 Rank 3, Thread 0, Node 1, Opteron 1, Core 0 <-- MASTER
 Rank 3, Thread 1, Node 1, Opteron 1, Core 1 <-- slave
 Rank 3, Thread 2, Node 1, Opteron 1, Core 2 <-- slave
 Rank 3, Thread 3, Node 1, Opteron 1, Core 3 <-- slave
 Rank 3, Thread 4, Node 1, Opteron 1, Core 4 <-- slave
 Rank 3, Thread 5, Node 1, Opteron 1, Core 5 <-- slave

Go to Menu

73

Running Jobs: Threads – XT5 Example 3

•  Example 3: Launch 4 MPI tasks, each with 2 threads. Only place 1 MPI task (its
two threads) on each Opteron. (This requests 2 compute nodes and requires a size
request of 24 even though only 8 cores are actually being used):

export OMP_NUM_THREADS=2
> aprun -n4 -d2 -S1 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 1, Thread 0, Node 0, Opteron 1, Core 0 <-- MASTER
Rank 1, Thread 1, Node 0, Opteron 1, Core 1 <-- slave
Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 3, Thread 0, Node 1, Opteron 1, Core 0 <-- MASTER
Rank 3, Thread 1, Node 1, Opteron 1, Core 1 <-- slave

Go to Menu

74

Running Jobs: Threads – XT4 Example 1

•  Example 1: Launch 2 MPI tasks, each with 4 threads (this requests 2 compute nodes
and requires a size request of 8):

export OMP_NUM_THREADS=4
> aprun -n2 -d4 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 1, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 1, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 1, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
Rank 1, Thread 3, Node 1, Opteron 0, Core 3 <-- slave

Go to Menu

75

Running Jobs: Threads – XT4 Example 2

•  Example 2: Launch 2 MPI tasks, each with 2 threads. Place 1 MPI task per Opteron
(this requests 2 compute nodes and requires a size request of 8):

export OMP_NUM_THREADS=4
> aprun -n2 –d2 –S1 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave

Go to Menu

76

Running Jobs: MPI Task Layout

The default MPI task layout is SMP-style. This means MPI will
sequentially allocate all cores on one node before allocating tasks to
another node.

Changing/Viewing Layout

•  The layout order can be changed using the environment variable
MPICH_RANK_REORDER_METHOD. See man intro_mpi for
more information.

•  Task layout can be seen by setting
MPICH_RANK_REORDER_DISPLAY to 1.

Go to Menu

77

Running Jobs: Single-Processor (Serial)
Jobs

•  Serial programs which are memory or computationally intensive should
never be run on the service nodes (anything outside of aprun).

•  Service nodes have limited resources shared between all users. When they
run out the system problems may result.

•  To run serial programs on the compute nodes, the program must be
compiled with the compiler wrappers: cc, CC or ftn. You would then
need to request one socket (12 cores) with PBS (#PBS -l size=12).

•  Use the following line to run a serial executable on a compute node:
 aprun -n 1 ./a.out

•  Note that on both XT4 and XT5 running a serial job will give you an
access to all memory of the socket – 8 Gb.

•  Running a serial job on a single core will occupy the whole node, so that
the remaining cores (three cores for XT4 node and seven cores for XT5
node) will be idling.

•  The following slide shows you how to make use of these idling nodes by
running several copies of serial job on them.

Go to Menu

78

Running Jobs: Running Multiple Single-
Processor Programs

The following batch script shows how to run multiple copies of a serial program on a compute
node:
#!/bin/csh
#PBS -A TG-XXXXXXXXX
#PBS -N run_serial
#PBS -l walltime=00:30:00,size=12
#PBS -j oe
#PBS -V

set echo
cd /lustre/scratch/$USER/serial_job

Use aprun to start a shell script which runs 12 copies of the
of the same executable on a compute node
Note: all aprun options specified below are required
-n 1 # run on a single node
-d 12 # allows the script to access all the memory on the node
-cc none # allows each serial process to run on its own core
-a xt # required by aprun to run a script instead of a program

aprun -n 1 -d 12 -cc none -a xt ./run_serial

Go to Menu

79

Running Jobs: Running Multiple Single-
Processor Programs

The run_serial script looks like this:

#!/bin/sh # This must be /bin/sh (other shells do not
work)

Run 12 copies of serial_code in the background
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &

Wait until all copies of serial_code have finished wait

Go to Menu

80

Third-Party Software

•  NCCS has installed many third-party software packages,
libraries, etc., and created module files for them
- Third-party applications (e.g., MATLAB, GAMESS)
- Latest versions or old versions not supported by

vendor (e.g., fftw/3.1.2)
- Suboptimal versions to do proof-of-concept work (e.g.,

blas/ref)
- Debug versions (e.g., petsc/2.3.3-debug)

•  NCCS modules available via module load command,
installed in /sw/xt/ directory

Go to Menu

81

Outline: Resources for Users

–  Getting Started

–  Advanced Topics

–  More Information

Go to Menu

82

Resources for Users: Getting Started

•  About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

•  Quad Core AMD Opteron Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

•  PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

•  NCCS Training & Education – archives of NCCS workshops and seminar series, HPC/
parallel computing references

http://www.nccs.gov/user-support/training-education/

•  2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad-
core-workshop/

Go to Menu

83

Resources for Users: Advanced Topics
•  Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

•  Debugging Applications Using DDT

http://www.nccs.gov/computing-resources/jaguar/software/?software=ddt

•  Using Cray Performance Tools - CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/
cray-pat/

•  I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-
tips/

•  NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/
Go to Menu

84

Resources for Users: More Information

•  NCCS website

http://www.nccs.gov/

•  Cray Documentation

http://docs.cray.com/

•  Contact us

help@nccs.gov

Go to Menu

